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1. INTRODUCTION

Hyperbolic equations and systems of equations comprise a considerable part of mathematical models
used in various applications [1]. Among them, a wide class of problems is related to finding weak solutions,
which are described by piecewise smooth functions and can have jumps. High�order accurate shock�cap�
turing schemes that are monotone [1] and conservative [2] are widely used for the numerical solution of
such problems. In a relatively recent survey [3] concerning the construction of high�order accurate mono�
tone conservative difference schemes for hyperbolic equations, it was noted that a promising direction in
the development of such schemes is to use schemes with a compact spatial stencil, i.e., compact schemes
[4]. In the class of compact schemes, symmetric ones of even order of accuracy in space are of greatest
interest, because they have an important property, namely, for a hyperbolic system of conservation laws,
the order of classical approximation for smooth solutions is equal to the order of weak approximation for
discontinuous solutions [5].

In [6–8] for quasilinear one�dimensional equations and systems of equations of the hyperbolic type,
bicompact difference schemes on a two�point stencil were proposed that are fourth�order accurate in
space. These schemes are absolutely stable, conservative, and monotone for local Courant numbers κ ≥ 1/4
[7, 8]. They make no use of artificial viscosity (see, e.g., [9]) or monotonizing procedures in the form of
flux limiters (see, e.g., [10]). Moreover, they are efficient and can be solved using by the running calcula�
tion method.

In this paper, bicompact difference schemes [6–8] are generalized to multidimensional hyperbolic
equations. Like their one�dimensional counterparts, the generalized schemes have important properties,
such as the high order of accuracy in space and time, absolute stability, conservation, and efficiency. These
schemes can be solved using the running calculation method; i.e., they are easy to implement. Following
the technique of [11] as applied to initial–boundary value problems for the linear advection equation and
the nonlinear Hopf equation on refined meshes, we show that the orders of grid convergence of the mul�
tidimensional schemes are close to the corresponding orders of their approximation in independent vari�
ables. For the propagation of a two�dimensional rectangular pulse and an initial–boundary value problem
for the Hopf equation with a discontinuous solution, it is also shown that the multidimensional schemes
inherit the monotonicity of their one�dimensional analogues.
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2. COMPACT SCHEME FOR A ONE�DIMENSIONAL NONSTATIONARY 
HYPERBOLIC EQUATION

First, we consider an initial–boundary value problem for a one�dimensional scalar quasilinear hyper�
bolic equation written in conservative form:

(1)

Let us briefly describe the basic ideas underlying the construction of running compact schemes [6–8] as
applied to problem (1), which are used below to develop similar schemes for a multidimensional version
of this problem.

The schemes proposed in [6–8] have a compact stencil and are fourth�order accurate in x. They are
constructed using the method of lines and an integro�interpolation method. For this purpose, on the
interval [0, ∞), we introduce a basic nonuniform grid ωx = {xj, j ≥ 0} consisting of integer nodes and an

additional grid  = ,  consisting of half�integer nodes. The values of the sought grid function
at the half�integer nodes uj + 1/2 are treated as auxiliary in the construction of a high�order accurate running
difference scheme for determining uj at integer nodes. Discretizing the spatial derivative on the stencil
consisting of two integer nodes xj and xj + 1 and the half�integer node xj + 1/2 yields two differential�differ�

ence equations that hold up to  for the exact solution of Eq. (1), where  =  is the spatial
step of the scheme. The first of these equations has the form

(2)

and approximates the baseline equation (1) on the grid. The second equation is

(3)

and approximates the following differential consequence of Eq. (1):

. (4)

Apparently, the idea of using equations of type (4) as differential consequences for the design of high�order
accurate conservative compact schemes was first proposed in [12]. However, in contrast to [12], the values
of u at half�integer nodes rather than its spatial derivatives at integer nodes were used in [6–8] as additional
sought grid functions in the construction of a compact scheme.

If the function uj(t) is given (at j = 0, it is known from the boundary condition), then Eqs. (2) and (3)
are used to determine the unknown functions uj + 1/2(t) and uj + 1(t). This means that uj + 1(t) is determined
from uj(t) with the help of the running calculation algorithm, while uj + 1/2(t) is an auxiliary function in this
algorithm.

Equations (2) and (3) can be written in operator form if we introduce the symmetric difference opera�
tors (see [4])

(5)

where E is the identity operator. In contrast to [4], operators (5) map functions given on the additional
grid  to functions defined on the joint grid .

In operator form, Eqs. (2) and (3) become

, (6)

. (7)
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Compact difference schemes [6–8] are obtained by discretizing the time derivative in Eqs. (6) and (7)
when this evolution system of ordinary differential equations (ODEs) is integrated using either an implicit
Euler method or three�stage diagonal implicit Runge–Kutta methods.

3. COMPACT SCHEME FOR A MULTIDIMENSIONAL NONSTATIONARY 
HYPERBOLIC EQUATION

The method for constructing a compact scheme is described as applied to the two�dimensional ana�
logue of problem (1):

(8)

As in the one�dimensional case, a compact scheme for Eq. (8) is constructed using the method of lines
combined with an integro�interpolation method. For this purpose, in the domain of spatial variables Ω =
{(x, y), x ≥ 0, y ≥ 0}, we introduce a basic grid ωx × ωy consisting of integer nodes (xj, yk), where ωy = {yk, k ≥ 0}.

Additionally, in this domain, we introduce auxiliary grids , , and  consisting of half�

integer nodes, where  = , . Along with baseline equation (8), its differential consequences
are also considered:

, (9)

, (10)

. (11)

By discretizing the spatial derivatives in Eqs. (8)–(11) on the stencil consisting of four integer nodes
(xj, yk), (xj + 1, yk), (xj, yk + 1), and (xj + 1, yk + 1) and five auxiliary half�integer nodes (xj + 1/2, yk), (xj, yk + 1/2),
(xj + 1, yk + 1/2), (xj + 1/2, yk + 1), and (xj + 1/2, yk + 1/2), it is easy to derive four differential�difference equa�

tions that hold up to  for the exact solution of Eq. (8), where  = ,  and
. The first of these equations has the form

(12)

and approximates the baseline equation (8) on the grid. The other three equations

(13)

(14)

(15)

approximate Eqs. (9)–(11). In Eqs. (12)–(15), the difference operators , , and  (i = x, y) are two�
dimensional analogues of difference operators (5) and are defined for two�dimensional grid functions
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given on the set of half�integer nodes. For example, applying the operators  (i = x, y) to the grid func�
tions yields the formulas

The above manipulations performed for the scalar equation (8) also apply to the system of equations

where u(x, t) is the sought vector function with m components, while F(u) and G(u) are given vector func�
tions of dimension m. As a result, we can obtain systems of ODEs similar to (12)–(15).

We introduce a nonuniform grid {tn, n ≥ 0} on the interval [0, ∞). Replacing the time derivatives in sys�
tem (12)–(15) by any difference approximations produces a family of compact difference schemes for the
numerical solution of Eq. (8). For example, if the time derivatives at the current level t = tn + 1 are approx�
imated by backward differences, then we obtain a baseline difference scheme consisting of four equations

(16)

(17)

(18)

(19)

Here, , , and τ = tn + 1 – tn is the time step. Difference scheme (16)–(19) is an
implicit Euler scheme that is first�order accurate in time and L�stable [13] and, hence, absolutely stable.
In what follows, the superscript n + 1 on quantities at the current time level is omitted.

Note that the differential�difference equations (12)–(15) were derived by the integro�interpolation
method from the conservative differential equations (8)–(11). This equation�deriving technique ensures
that the baseline difference scheme (16)–(19) is conservative as well.

Scheme (16)–(19) can be solved using the running calculation algorithm as follows. At the current
time level, consider a two�dimensional rectangular corner grid cell with the lower left node at (x0, y0). The
values of the grid function u at five nodes (x0, y0), (x1/2, y0), (x1, y0), (x0, y1/2), and (x0, y1) are known from
the boundary conditions. Four difference equations (16)–(19) with j = 0 and k = 0 are used to find the
values of u at four nodes (x1/2, y1/2), (x1/2, y1), (x1, y1/2), and (x1, y1). Then similar computations are per�
formed in a neighboring cell in the x or y direction. In fact, scheme (16)–(19) is bicompact in each spatial
direction according to the terminology of [14, 15], and the half�integer grid nodes are auxiliary in the
scheme. To implement the scheme, the values of the sought function u at half�integer nodes are required
only at the initial time level n = 0 and on the boundary of the computational domain. Since the scheme is
bicompact, its order of accuracy on the integer�valued grid is preserved in the transition from uniform to
nonuniform spatial grids.

In the limiting cases when either F = 0 or G = 0 in Eq. (8), difference scheme (16)–(19) turns into cor�
responding one�dimensional schemes, which are monotone in a wide range of the local Courant numbers

 =  and  =  (see [6–8]).

A dissipative difference scheme of accuracy O(τ3) is obtained when system (12)–(15) is integrated
using a special three�stage diagonal implicit Runge–Kutta scheme [8]. Its coefficients A, b, and с [13] are
determined by the Butcher tableau

(20)

This scheme is L�stable and stiffly accurate [13] and involves the baseline scheme of O(τ) accuracy (the
first stage of the scheme).
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A hybrid monotonized scheme is constructed as a nonlinear combination of the baseline scheme of
O(τ) accuracy (scheme A) and scheme (20) of O(τ3) accuracy (scheme B). In this scheme, the sought grid
function uj, k at the time t = tn + 1 is computed as a combination of the solution uj, k(A) produced by scheme
A and the solution uj, k(B) produced by B (see [7, 8]), specifically,

 (21)

, (22)

where f(w) = w2/(1 + w2) and C1 > 0 is a constant chosen depending on the problem under study. The
choice of the weight functions αj, k in (22) is determined by the behavior of |uj, k(B) – uj, k(A)|/τ in the
domains where the solution is smooth and has jumps. This quantity is O(τ) and O(1) in the former and
latter cases, respectively.

To construct a conservative compact running scheme in the case of the three�dimensional analogue of
Eq. (1), namely,

(23)

along with Eq. (23), we need to consider its differential consequences
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Fig. 1. Error in the numerical solution of the linear advection equation at t = 1 as a function of the spatial step h for τ =
2 × 10–4 (solid circles) and as a function of the time step τ for h = 5 × 10–3 (open circles).
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By discretizing the spatial derivatives in Eqs. (23)–(26) on a stencil consisting of 8 integer nodes
and 19 auxiliary half�integer nodes, it is easy to obtain eight differential�difference equations that hold up

to  for the exact solution of Eq. (23). These equations are similar in structure and difference oper�
ators to Eqs. (12)–(15). They can be integrated with respect to time using schemes A and B.

4. GRID CONVERGENCE AND MONOTONICITY OF THE SCHEME

The actual accuracy of the scheme was estimated via computations on refined nested grids (see [11]).

Figure 1 shows the error u – ue (ue is the exact solution) computed in the discrete C norm for the
numerical solution of problem (8) with F(u) = G(u) = u, i.e., for the linear advection equation with a =
b = 1. The problem was solved in the domain –1 ≤ x, y ≤ 1 with the initial condition

(27)

and periodic boundary conditions. The grid was uniform with steps hx = hy = h. The circles in Fig. 1 depict
the numerical results and lie on straight lines whose slopes indicate the actual orders of accuracy of three�
stage scheme (20). According to Fig. 1, the effective convergence order of the scheme in time is 2.99, while
the convergence order in space is 4.11.

Computations were also performed for the linear advection equation over a long time interval on a
sequence of refined meshes with the constant value r = 0.5 (the ratio of the time step to the spatial mesh

4
max( )O h

= π π

0( , ) sin( ) sin( )u x y x y

Error in the numerical solution of the problem for the linear advection equation with a = b = 1, initial conditions (27),
and periodic boundary conditions at r = 0.5 and t = 100

N EC kC

20 2.51e–2

40 3.26e–3 2.94

80 4.08e–4 3.00

160 5.10e–5 3.00

−6

−7

log||u − ue||C

0.8 1.2 1.6 2.0 2.4 2.8
−logh, −logτ

3.2

−5

−4

−3

−2

Fig. 2. Error in the numerical solution of the nonlinear Hopf equation at t = 0.3 as a function of the spatial step h for τ =
2 × 10–4 (solid circles) and as a function of the time step τ for h = 5 × 10–3 (open circles).
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Fig. 3. Numerical results for the propagation of a two�dimensional rectangular pulse at the time t = 1 for h = 10–2 and the
Courant number κ = 0.25.
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size). The table presents the deviations EС of the numerical solution from the exact one estimated in the
discrete С norm and the convergence orders kC under mesh refinement:

where N = 2/h is the number of mesh cells in each spatial direction.
The table shows that the convergence order of the difference scheme on refined meshes in space and

time is close to its minimum order of accuracy, i.e., to its order in time.
Figure 2 depicts the error u – ue in the numerical solution of problem (8) with F(u) = G(u) = u2/2, i.e.,

for the nonlinear Hopf equation (see [16]). The problem was solved in the domain –1 ≤ x, y ≤ 1 with the
initial condition
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and periodic boundary conditions. The grid was uniform with steps hx = hy = h. The results presented in
Fig. 2 suggest that the effective order of convergence of three�stage scheme (20) in time is 2.94, while the
order of convergence in space is 3.88.

Figure 3 displays the numerical results obtained for a two�dimensional rectangular pulse of unit ampli�
tude propagating at the velocities a  = b  = 1. At the initial time t = 0, the pulse occupied the domain

, . The problem was solved in the domain –1 ≤ x, y ≤ 1 on a uniform grid with spatial
steps hx = hy = h by applying hybrid scheme (21), (22) with C1 = 2. Figure 3 shows that the multidimen�
sional scheme yields a nonoscillating solution near the pulse boundary, whose position is well reproduced
as a function of time. Thus, the multidimensional scheme inherits the monotonicity of its one�dimen�
sional counterparts (see [6–8]).

For the two�dimensional Hopf equation with initial conditions (28) and periodic boundary conditions,
Figs. 4 and 5 depict the numerical solutions produced by hybrid scheme (21), (22) with C1 = 1.5 at the
time t = 2/π, when a jump is formed in the solution [16], and at the time t = 0.9, when the jump has a
significant height. Figure 4 shows that the compact scheme yields nonoscillating solutions near the jump.
The dots in Fig. 5 mark two fronts of discontinuity in the exact solution ue, at which its spatial derivatives
are infinite. In the (x, y) plane, these fronts are parametrically described by the equations

 

where q is a parameter and C2 is a constant equal to –1.25 for the first jump in the solution and to –0.25
for the second jump. Figure 5 shows that the positions of the fronts are well reproduced by the difference
scheme, which confirms its conservativeness.

Once again, we note that, like the scheme for a scalar one�dimensional equation, the compact scheme
proposed for a scalar multidimensional hyperbolic equation can be extended without changes to a system
of equations (see [6–8]).

CONCLUSIONS

A compact difference scheme was proposed for the numerical solution of multidimensional nonsta�
tionary hyperbolic equations and systems of equations. Due to its construction method, the scheme inher�
its a number of important properties from its one�dimensional analogue (see [8]).

(i) For smooth solutions, the scheme is fourth�order accurate in space on a stencil consisting of two
integer nodes. The half�integer node in the stencil is auxiliary in the sense that it can be eliminated from
the scheme on introducing auxiliary grid functions (see [6–8]). In fact, the scheme is bicompact accord�
ing to the terminology of [14, 15]. As a result, the difference equations of the scheme can be solved by
applying the running calculation method. Another consequence is that the order of accuracy of the
scheme is preserved on a nonuniform spatial grid consisting of integer nodes.

(ii) The scheme is third�order accurate in time for smooth solutions. It consists of three stages, each
represented by a two�level scheme.

(iii) The scheme is absolutely stable.

(iv) The numerical experiments showed that the scheme has monotone numerical solutions in the
same wide range of local Courant numbers as its one�dimensional analogues in [6–8]. Moreover, the
scheme makes no use of artificial viscosity or monotonizing procedures in the form of flux limiters.

(v) The scheme is conservative.

(vi) The orders of the scheme in discrete independent variables coincide with those of the differential
equations in the respective continuous variables. As a result, the number of boundary conditions for the
difference scheme is the same as that for the differential problem to be solved.

(vii) The scheme is efficient. At the current time level, it can be solved by applying the running calcu�
lation method in space.
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